정리/Data&AI

Overfitting, Hyperparameters

yunny_world 2022. 10. 4. 16:15

Overfitting

- If the neral network is large and deep enough, the neral network can achieve zero loss for the training dataset.

 - It can memorize the answer to every problem in the dataset.

  - Without a proper understanding of the problem

  - We call it Overfitting

 - It can even memorize random trash dataset.

  - A neural network can reduce the training loss that has no pattern at all.

 

https://developers.google.com/machine-learning/crash-course/generalization/peril-of-overfitting

 

Generalization: Peril of Overfitting  |  Machine Learning  |  Google Developers

Send feedback Generalization: Peril of Overfitting Stay organized with collections Save and categorize content based on your preferences. Estimated Time: 10 minutes This module focuses on generalization. In order to develop some intuition about this concep

developers.google.com

 

Hyperprameters

- Hyperparameters are settings that can affect the training of parameters.

- Some examples:

  Number of layers, Size of each layer, Structure of neural network, Learing rate, Number of training iteration, Loss          function

 

Hyperparameter Overfitting

- The specific hyperparameters that we have used was tested only with a specific test set.

 - We cannot assure that the same setting works well with anoter unseen dataset.

- Therefore, we use another dataset called the validation set.

 - So dataset is split into train / valid / test

 - Instead of checking the accuracy on the test set, we use the validation set.

 - We must not checking the accuracy until the very last stage.

- Parameters are trained with the Training set, and Hyperparameters are selected with the validation set.

 

번외)

머신 러닝에 관한 좋은 레퍼런스 링크

https://developers.google.com/machine-learning/crash-course/ml-intro

 

머신러닝 소개  |  Machine Learning  |  Google Developers

이 페이지는 Cloud Translation API를 통해 번역되었습니다. Switch to English 의견 보내기 머신러닝 소개 컬렉션을 사용해 정리하기 내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요. 이 모듈에서

developers.google.com

 

Accuracy in Machine Learning

https://developers.google.com/machine-learning/crash-course/classification/accuracy

 

분류: 정확성  |  Machine Learning  |  Google Developers

이 페이지는 Cloud Translation API를 통해 번역되었습니다. Switch to English 의견 보내기 분류: 정확성 컬렉션을 사용해 정리하기 내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요. 예상 시간: 6분

developers.google.com

'정리 > Data&AI' 카테고리의 다른 글

활성화 함수와 손실 함수  (0) 2022.10.20
Batch와 Epoch  (0) 2022.10.13
손실 함수, 경사 하강법, 역전파  (0) 2022.09.22
Python에서 OOP하기  (0) 2022.09.14
Jupyter Notebook관련 이것 저것  (0) 2022.09.14